光學平臺廣泛運用于光學、電子、精密機械制造、冶金、航天、航空、航海、精密化工和無損檢測等領域,以及其他機械行業(yè)的精密試驗儀器、設備振動隔離的關鍵裝置中。
隨著先進的設備和工藝的發(fā)展,使納米量級的測量成為可能。例如,變相光學干涉儀測量物體的表面粗糙度,目前可以達到1納米的分辨率。在半導體領域,已生產出線寬在亞微米量級的集成電路,提出測量準確率小于50納米的精度要求。
這樣的應用對系統(tǒng)中不同元件相關配合精度和穩(wěn)定性提出了比較高的要求。
例如,用顯微鏡對圖像進行高度放大的成像系統(tǒng),顯微鏡和照像物鏡共同決定了相紙上每點的圖像。如果,在曝光過程中光學系統(tǒng)的每一部分(照明系統(tǒng)、樣品、顯微鏡光學系統(tǒng)、成像光學系統(tǒng)和相紙平面)都精確地一同移動,不存在相對位移,成像也會很清晰。如果樣品相對物鏡產生了運動,則像就會模糊。在光學干涉測量、全息及運用相似的規(guī)律時,控制相對運動都是很重要的。
在一個理想的剛性體內部(只在理論上存在),任何兩點的相對位置都是不變的。也就是說,在振動、靜力矩或溫度變化的情況下,任何實體的尺寸和形狀都是不變的。如果所有的元件都穩(wěn)固地連接成一個理想的剛性體,不同元件之間沒有相對位移,系統(tǒng)的性能也會很穩(wěn)固。
理想的剛性體是不存在的?,F(xiàn)實中的系統(tǒng)只能近似的認為是剛性的,因此,其穩(wěn)定性就要受到多方面因素的影響。例如外界的振源,系統(tǒng)的重量,光學平臺的結構等等。